
数字化人才培养课程,覆盖自然语言处理NLP、计算机视觉CV、数据挖掘、ChatGPT等AI各行业前沿技术,培养AI专精型人才
课程
特色
国家政策导向依托于国家政策的支持,各产业进行数字化转型,智能产业化的升级,推动了人工智能技术蓬勃发展,人才供不应求
人工智能市场现象级增长万物智联时代,随着大数据、云计算、5G等新技术不断融合创新,加速了新一代智能设备的井喷式发展
AI人才缺口达500万人工智能赋能实体产业规模每年40%速度增长,人工智能核心技术达到商业化阶段,嵌入式AI成为主流技术
课程设置科学合理
细分层级,不同阶段定制不同
学习策略,让你轻松get技能
技术大牛
倾力研发
专职教研团队
沉淀AI新技术
以就业为导向
覆盖AI职业全技能
助力学员高端就业
技术周更新
以周为单位,持续
更新热点前沿技术
多领域
实战项目
面向大厂实际开发
场景和需求,打造
学员核心竞争力
刚毕业想把握未来
想抓住未来方向无基础自学困难
热爱人工智能,但发现想转行没有目标
在传统行业打拼多年喜欢钻研人工智能
热爱新技术、新热点、CV计算机视觉处理基础与项目
掌握计算机视觉基础算法,完成CV多场景项目人工智能NLP多场景项目
掌握多场景NLP自然语言处理项目,进阶高阶人工智能开发ChatGPT技术深入浅出
掌握ChatGPT系列自然语言模型,完成项目全流程开发深度学习与NLP自然语言处理基础
深度学习与NLP自然语言基础,使用Pytorch完成NLP模型搭建机器学习&数据挖掘项目
掌握机器学习技术栈,完成数据挖掘项目数据处理与统计分析
掌握SQL及Pandas完成数据处理和可视化操作Python编程进阶
掌握AI开发必备的Python高级语法Python编程基础
用主流AI编程语言完成基础程序编写高标准
"亿元级"研发投入 大厂项目共建全行业
10+AI大型项目,覆盖8大热门行业全流程
大厂AI开发标准,重现AI项目开发全流程真场景
真实海量数据,真实业务需求深技术
技术大牛倾力研发,专职沉淀AI新技术严保障
12项评审流程,4项验收标准场景化分工
人员职务角色划分引入项目管理工具
使用Git、ONES等任务分解
组长担任项目经理工作需求宣讲及业务对接
讲师担任产品经理角色代码开发
每日晨会表明开发计划项目部署
测试环境测试验收
线上自测项目联调
进行项目联调项目上线
生产环境部署,线上回测后进行答辩和评优20+名
AI技术大牛
平均5年+
AI从业经验
300+次
技术研讨
车辆检测、计数和分类解决方案
图像去畸变的解决方案
实时车道线检测的解决方案
实时采集摄像头人脸视频的解决方案
利用深度学习方法进行人脸属性提取的解决方案
动态图像人脸定位的解决方案
利用深度神经网络进行人脸实时识别跟踪的解决方案
......
模型训练流水线
模型并行预测服务
模型热更新微服务
分布式模型训练
自动参数调优
Fasttext模型全面解析应用
Transformer迁移学习深入实践
ResNet主干视觉网络剖析
强化学习与对抗网络解读
大型模型压缩与知识蒸馏探索
......
资深开发工程师
(4~6 年)
技术专家
(6~10 年)
CTO
(10 年以上)
技术开发组长
(4~6 年)
项目经理
(6~10 年)
项目总监
(10 年以上)
行业大牛
(4~6 年)
新型技术创业者
(6~10 年)
项目总监
(10 年以上)
杜老师课程研究员
10年经验 / 人工智能博士赵老师课程研究员
博士 / 微软AI课程导师朱老师课程研究员
多年开发经验/ 机器学习课程大纲
基础班
1. Python编程基础
就业班
1. Python编程进阶 2. 数据处理与统计分析 3. 机器学习与多场景项目实战 4. 金融风控项目 5. 数据挖掘项目实战 6. 深度学习基础 7. 自然语言处理基础 8. ChatGPT技术深入浅出 9. 文本摘要与传智大脑项目二选一 10. 知识图谱与投满分项目二选一 11. 泛娱数据关系抽取项目实战 12. 面试加强 13. 计算机视觉基础 14. 人脸支付项目、智慧交通项目二选一
人工智能开发 V4.0版本
课时:8天 技术点:85项 测验:1次 学习方式:线下面授
1.掌握Python开发环境基本配置| 2.掌握运算符.表达式.流程控制语句.数组等的使用| 3.掌握字符串的基本操作| 4.初步建立面向对象的编程思维| 5.熟悉异常捕获的基本流程及使用方式, 6.掌握类和对象的基本使用方式
1. Python基础语法零基础学习Python的开始,包含了以下技术点:
01_变量| 02_标识符和关键字| 03_输入和输出| 04_数据类型转换| 05_PEP8编码规范| 06_比较/关系运算符| 07_if判断语句语法格式| 08_三目运算符| 09_while语句语法格式| 10_while 循环嵌套| 11_break 和 continue| 12_while 循环案例| 13_for循环
2. Python数据处理掌握Python的数据类型,并对其进行操作处理,包含了以下技术点:
01_字符串定义语法格式| 02_字符串遍历| 03_下标和切片| 04_字符串常见操作| 05_列表语法格式| 06_列表的遍历| 07_列表常见操作| 08_列表嵌套| 09_列表推导式| 10_元组语法格式| 11_元组操作| 12_字典语法格式| 13_字典常见操作| 14_字典的遍历
3. 函数能够实现Python函数的编写,包含了以下技术点:
01_函数概念和作用、函数定义、调用| 02_函数的参数| 03_函数的返回值| 04_函数的注释| 05_函数的嵌套调用| 06_可变和不可变类型| 07_局部变量| 08_全局变量| 09_组包和拆包、引用
4. 文件读写能够使用Python对文件进行操作,包含了以下技术点:
01_文件的打开与关闭、文件的读写| 02_文件、目录操作及案例| 03_os模块文件与目录相关操作
5. 异常处理主要介绍了在Python编程中如何处理异常,包含了以下技术点:
01_异常概念| 02_异常捕获| 03_异常的传递
6. 模块和包主要介绍了Python中的模块和包的体系,以及如何使用模块和包,包含了以下技术点:
01_模块介绍| 02_模块的导入| 03_包的概念| 04_包的导入| 05_模块中的__all__ | 06_模块中__name__
课时:7天 技术点:98项 测验:1次 学习方式:线下面授
1.掌握网络编程技术,能够实现网络通讯| 2.知道通讯协议原理| 3.掌握开发中的多任务编程实现方式| 4.知道多进程多线程的原理
1. 面向对象从逐步建立起面向对象编程思想,再到会使用对象,到创建对象,再到真正理解为什么封装对象,包含了以下技术点:
01_面向对象介绍| 02_类的定义和对象的创建| 03_添加和获取对象属性| 04_self 参数| 05_init方法| 06_继承| 07_子类方法重写| 08_类属性和实例属性| 09_类方法、实例方法、静态方法|
2. 网络编程主要学习通讯协议,以及Python实现TCP、HTTP通讯,包含了以下技术点:
01_IP地址的介绍| 02_端口和端口号的介绍| 03_TCP的介绍| 04_Socket的介绍| 05_TCP网络应用的开发流程| 06_基于TCP通信程序开发|
3. 多任务编程主要学习Python中多线程、多进程,包含了以下技术点:
01_多任务介绍| 02_多进程的使用| 03_多线程的使用| 04_线程同步|
4. 高级语法主要学习Python的高级语法,包含以下技术点:
01_闭包| 02_装饰器| 03_正则
5. Python数据结构主要学习主要查找算法、排序算法、关键数据结构
01_时间复杂度| 02_线性表| 03_链表| 04_常用数据结构
课时:10天 技术点:115项 测验:1次 学习方式:线下面授
1.掌握Linux常用命令,为数据开发后续学习打下的良好基础| 2.掌握MySQL数据库的使用| 3.掌握SQL语法| 4.掌握使用Python操作数据库| 5.掌握Pandas案例| 6.知道会图库使用| 7.掌握Pandas数据ETL| 8.掌握Pandas数据分析项目流程
1. Linux掌握Linux操作系统常用命令和权限管理
01_Linux命令使用| 02_Linux命令选项的使用| 03_远程登录和远程拷贝| 04_Linux权限管理| 05_vi编辑器使用| 06_集群搭建准备
2. MySQL与SQL零基础小白通过MySQL数据库,掌握核心必备SQL,包含了以下技术点:
01_数据库概念和作用| 02_MySQL数据类型| 03_数据完整性和约束| 04_数据库、表基本操作命令| 05_表数据操作命令| 06_where子句| 07_分组聚合| 08_连接查询| 09_外键的使用| 10_Pymysql
3. Numpy矩阵运算库Numpy矩阵运算库技术,包含以下技术点:
01_Numpy运算优势,数组的属性,数组的形状|02_Numpy实现数组基本操作|03_Numpy实现数组运算,矩阵乘法,矩阵求逆,伴随矩阵
4. Pandas数据清洗Pandas数据清洗技术,包含以下技术点:
1.数据组合:01_Pandas数据组合_concat连接;02_Pandas数据组合_merge数据;03_Pandas数据组合_join| 2.缺失值处理:01_缺失值处理介绍;02_缺失值处理_缺失值数量统计;03_缺失值处理;04_缺失值处理_删除缺失值;05_缺失值处理_填充缺失值| 3.整理数据| 4.Pandas数据类型| 5.apply函数:01_Series和DataFrame的apply方法;02_apply使用案例
5. Pandas数据整理Pandas数据处理技术,包含以下技术点:
1.数据分组: 01_单变量分组聚合; 02_通过调用agg进行聚合; 03_分组后transform; 04_transform练习| 2.Pandas透视表: 01_透视表概述&会员存量增量分析; 02_会员增量等级分布; 03_增量等级占比分析&整体等级分布; 04_线上线下增量分析&地区店均会员数量; 05_会销比计算; 06_连带率计算; 07_复购率计算| 3.datetime数据类型: 01_日期时间类型介绍; 02_提取日期分组案例; 03_股票数据处理; 04_datarange函数; 05_综合案例
6. Pandas数据可视化Pandas数据可视化技术,包含以下技术点:
1.Matplotlib可视化| 2.Pandas可视化| 3.Seaborn可视化|
7. Pandas数据分析项目利用所学的Python Pandas,以及可视化技术,完成数据处理项目实战
RFM客户分群案例: 01_RFM概念介绍| 02_RFM项目_数据加载和数据处理| 03_RFM项目_RFM计算| 04_RFM项目_RFM可视化| 05_RFM项目_业务解读和小结|
课时:10天 技术点:153项 测验:1次 学习方式:线下面授
1.掌握机器学习算法基本原理| 2.掌握使用机器学习模型训练的基本流程| 3.掌握Sklearn,Jieba,Gensim等常用机器学习相关开源库的使用| 4.熟练使用机器学习相关算法进行预测分析| 5.掌握数据分析常用思维方法| 6.熟练使用各种数据分析工具进行数据提取与数据展示| 7.熟练运用常用数据分析模型解决业务问题
1. 机器学习该部分主要学习机器学习基础理论,包含以下技术点:
01_人工智能概述| 02_机器学习开发流程和用到的数据介绍| 03_特征工程介绍和小结| 04_机器学习算法分类| 05_机器学习模型评估| 06_数据分析与机器学习
2. K近邻算法该部分主要学习机器学习KNN算法及实战,包含以下技术点:
01_K近邻算法基本原理| 02_K近邻算法进行分类预测| 03_sklearn实现knn| 04_训练集测试集划分| 05_分类算法的评估| 06_归一化和标准化| 07_超参数搜索| 08_K近邻算法总结
3. 线性回归该部分主要学习机器学习线性回归算法及实战,包含以下技术点:
01_线性回归简介| 02_线性回归API使用初步| 03_导数回顾| 04_线性回归的损失函数和优化方法| 05_梯度下降推导| 06_波士顿房价预测案例| 07_欠拟合和过拟合| 08_模型的保存和加载| 09_线性回归应用-回归分析
4. 逻辑回归该部分主要学习机器学习逻辑回归算法及实战,包含以下技术点:
01_逻辑回归简介| 02_逻辑回归API应用案例| 03_分类算法评价方法| 04_逻辑回归应用_分类分析
5. 聚类算法该部分主要学习机器学习聚类算法及实战,包含以下技术点:
01_聚类算法的概念| 02_聚类算法API的使用| 03_聚类算法实现原理| 04_聚类算法的评估| 05_聚类算法案例
6. 决策树该部分主要学习机器学习决策树算法及实战,包含以下技术点:
01_决策树算法简介| 02_ 决策树分类原理| 03_特征工程-特征提取| 04_ 决策树算法api| 05_ 决策树案例
7. 集成学习该部分主要学习机器学习集成算法算法及实战,包含以下技术点:
01 集成学习算法简介| 02 Bagging和随机森林| 03 随机森林案例| 04 Boosting介绍| 05 GBDT介绍| 06 XGBOOST介绍| 07 LightGBM介绍
8. 机器学习进阶算法该部分主要学习机器学习高阶算法及实战,包含以下技术点:
01 SVM| 02 朴素贝叶斯
9. 用户画像案例多场景项目实战部分,包含以下技术点:
01_用户行为分析| 02_用户画像标签分类| 03_统计类标签| 04_用户分群模型| 05_用户流失预测
10. 电商运营数据建模分析案例电商多场景项目实战部分,包含以下技术点:
01_零售销售报表| 02_数据探索性分析| 03_特征工程| 04_模型训练与特征优化| 05_模型部署上线
课时:6天技术点:88项测验:0次学习方式:线下面授
以金融风控项目为例:1.掌握风控业务场景的常用指标| 2.掌握评分卡的建模流程| 3.掌握评分卡特征工程的常用套路| 4.熟练运用机器学习算法解决风控业务场景下的问题
传统金融由于风控审批主要靠人工进行,审批速度慢,一般只服务大公司,或者收入较高的人群,很多低端.无稳定收入的群体和小微企业无法享受到传统金融服务。面临如此庞大的市场,小额贷款作为新型的金融服务产品应运而生,小额贷款业务具有单笔金额小.单笔利润低.利润率高.审批速度快的热点,所以基于用户申请信息的快速自动审批系统(风控系统)就成了互联网金融领域核心的竞争力。金融风控项目搭建了整套金融风控知识体系,从反欺诈.信用风险策略.评分卡模型构建等热点知识,使得学员具备中级金融风控分析师能力。
1.金融领域数据处理解决方案| 2.金融风控策略解决方案| 3.金融风控特征工程解决方案| 4.金融风控评分卡模型解决方案| 5.信用分风险策略解决方案| 6.风控模型部署与评估解决方案|
1.风控领域业务知识介绍:常见信贷风险.金融风控领域常用术语等| 2.评分卡建模概述:信贷审批业务基本流程.ABC评分卡概念.正负样本定义方法等| 3.评分卡建模特征工程:特征衍生.特征交叉.特征评估与筛选| 4.机器学习评分卡模型训练:逻辑回归评分卡.集成学习评分卡.模型评价(KS,AUC),评分映射方法,模型报告| 5.不均衡学习和异常点检测:样本不均衡的处理方法,异常点检测的常用方法|
课时:4天技术点:50项测验:1次学习方式:线下面授
1.掌握多行业数据挖掘业务| 2.掌握数据建模流程| 3.掌握机器学习调参方法| 4.熟练运用机器学习算法解决数据挖掘业务问题
该项目主要为数据挖掘多场景项目实战,皆在通过项目实战提升学生动手能力,利用机器学习技术解决数据挖掘问题,主要包括人才流失模型实战、现金贷风控模型实战、点击率预估项目实战和用户复购项目实战等,每个部分都是完整的业务和实现流程,通过此部分学习夯实机器学习技术基础,掌握多场景数据挖掘应用。
1.数据分析解决方案| 2.特征工程解决方案| 3.机器学习模型调参解决方案| 4.模型融合解决方案
1_x001f_.人才流失模型实战| 2.现金贷风控模型实战| 3.点击率预估项目实战| 4.用户复购项目实战
课时:6天 技术点:100项 测验:1次 学习方式:线下面授
1.pytorch工具处理神经网络涉及的关键点|2.掌握神经网络基础知识|3.掌握反向传播原理|3.了解深度学习正则化与算法优化
1. 神经网络基础该部分主要学习神经网络基础,包含以下技术点:
01_神经网络基础:神经网络的构成、激活函数、损失函数、优化方法及正则化|02_反向传播原理:梯度下降算法、链式法则、反向传播算法、改善反向传播算法性能的迭代法|03_深度学习正则化与算法优化:L1、L2、DroupOut、BN、SGD、RMSProp、Adagrad、Adam;04_实现多层神经网络案例|
2. 深度学习多框架对比该部分主要学习深度学习多框架对比,包含以下技术点:
01_Pytorch| 02_Tensorflow| 03_MxNet| 04_paddlepaddle|
3. Pytorch框架该部分主要学习Pytorch深度学习框架,包含以下技术点:
01_Pytorch介绍|02_张量概念|03_张量运算|04_反向传播|05_梯度,自动梯度|06_参数更新|07_数据加载器|08_迭代数据集|
课时:12天 技术点:180项 测验:1次 学习方式:线下面授
1.掌握NLP领域前沿的技术解决方案|2.了解NLP应用场景|3.掌握NLP相关知识的原理和实现|4.掌握传统序列模型的基本原理和使用|5.掌握非序列模型解决文本问题的原理和方案|6.能够使用pytorch搭建神经网络|7.构建基本的语言翻译系统模型|8.构建基本的文本生成系统模型|9.构建基本的文本分类器模型|10.使用ID-CNN+CRF进行命名实体识别|11.使用fasttext进行快速的文本分类|12.胜任多数企业的NLP工程师的职位
1. NLP入门该部分主要学习NLP基础,包含以下技术点:
01_经典案例|01_对话系统简介|02_NLU简介|03_文本生成简介|04_机器翻译简介|05_智能客服介绍|06_机器人写作介绍|07_作文打分介绍
2. 文本预处理该部分主要学习文本预处理技术,包含以下技术点:
01_文本处理的基本方|02_文本张量表示方法|03_文本语料的数据分析,文本特征处理,数据增强方法|04_分词,词性标注,命名实体识别|05_one-hot编码,Word2vec,Word Embedding|06_标签数量分布,句子长度分布,词频统计与关键词词云
3. RNN及变体该部分主要学习RNN、LSTM、GRU等技术,包含以下技术点:
01_传统RNN,LSTM,Bi-LSTM,GRU,Bi-GRU|02_新闻分类案例,机器翻译案例|03_seq2seq,遗忘门,输入门,细胞状态,输出门,更新门,重置门
4. Transfomer原理该部分主要学习Transform技术,包含以下技术点:
01_输入部分,输出部分,编码器部分,解码器部分,线性层|02_softmax层,注意力机制,多头注意力机制|03_前馈全连接层,规范化层,子层连接结构,语言模型|04_wikiText-2数据集,模型超参数|05_模型的训练,模型验证
5. 传统的序列模型该部分主要学习传统序列模型,包含以下技术点:
01_HMM原理,HMM实现,HMM优劣势|02_CRF原理,CRF优劣势,03_CRF与HMM区别,CRF实现|04_HMM历CRF历史,HMM现状,CRF现状
6. 迁移学习该部分主要学习迁移学习,包含以下技术点:
01_fasttext工具,进行文本分类|02_CBOW模式,skip-gram模式,预训练模型|03_微调,微调脚本,训练词向量|04_模型调优|05_n-gram特征|06_CoLA 数据集,SST-2 数据集,MRPC 数据集|07_BERT,GPT,GPT-2,08_pytorch.hub
课时:12天 技术点:80项 测验:1次 学习方式:线下面授
掌握ChatGPT系列自然语言模型,掌握自然语言处理项目,完成项目全流程开发。
1. ChatGPT入门主要学习ChatGPT注册、使用及Python调用ChatGPT,包含以下技术点:
ChatGPT背景介绍|如何使用ChatGPT|ChatGPT入门程序|ChatGPT实际应用场景案例
2. ChatGPT原理详解主要学习从GPT到ChatGPT原理详解
ChatGPT本质|GPT系列模型介绍|GPT-1详解|GPT-2详解|GPT-3详解|ChatGPT原理详解
3. ChatGPT项目实战主要以实际业务为驱动完成ChatGPT项目实战
项目背景|数据预处理|基于ChatGPT完成模型搭建|模型结果分析
4. 基于大型预训练模型搭建聊天机器人学习从0-1搭建聊天机器人
i语料处理方法|文本分词方法|闲聊机器人实现|基于Seq2Seq基础模型实现闲聊机器人|基于预训练模型优化|模型部署上线
5. 聊天机器人和问答系统主要学习完整的聊天机器人项目
解决方案列表|项目架构及数据采集|命名实体识别|对话系统
课时:8天技术点:130项测验:0次学习方式:线下面授
以文本摘要项目为例:1.掌握TextRank模型|2.掌握seq2seq模型|3.掌握PGN模型|4.掌握生成式模型的评估方法|5.掌握生成式模型的迭代优化
文本摘要项目是一个基于NLP底层基础任务的全流程实现项目。在工业界有广泛应用,比如四六级的阅读理解考试,新浪体育的球评新闻,今日头条的新闻快递,金融简报等等。涉及到互联网场景下海量的大段文本的信息压缩和融合技术,可以让人们在信息爆炸的时代快速浏览重要信息。通过本项目的学习,可以掌握工业界最主流的处理文本摘要的模型和优化技术。这里面关于解码方案的优化,数据增强的优化,还有训练策略的优化,无论是理论还是代码,都可以非常方便的迁移到未来企业级的开发中。同时在部署方案上,掌握GPU部署和CPU部署的相同点和不同点。
1.抽取式文本摘要解决方案| 2.生成式文本摘要解决方案| 3.自主训练词向量解决方案| 4.解码方案的优化解决方案| 5.数据增强优化解决方案| 6.训练策略优化解决方案| 7.GPU部署解决方案| 8.CPU部署解决方案
1.文本摘要的应用场景,主流处理方案的模式| 2.工业场景下的原始数据全流程处理,原始数据很杂乱,需要按照需求一步步的取舍,去噪,最终得到模型阶段可用的数据| 3.搭建基于textRank的抽取式文本摘要模型,并进行评估| 4.搭建基于经典seq2seq架构的生成式文本摘要,并进行评估| 5.搭建基于PGN先进架构的生成式文本摘要,并进行评估| 6.详细解析生成式NLP任务的评估算法BLEU和ROUGE,并实现rouge的评估代码| 7.针对于损失函数的优化方案coverage解决文本重复问题| 8.针对于解码器端的优化,按照beamsearch进行解码的实现方案| 9.针对于NLP领域数据增强的实现方案,采用单词替换法,回译数据法,半监督学习法的理论和代码实现| 10.针对于训练策略的优化,ScheduledSampling和WeightTying的理论和代码实现| 11.实现模型的GPU部署和CPU部署
课时:6天技术点:80项测验:0次学习方式:线下面授
以投满分项目为例:1.基于大规模业务留存数据构建快速文本分类系统|2.基于推荐系统内部分频道投递的需求,快速搭建短文本精准分类投递的模型|3.基于随机森林和FastText搭建快速基线模型,验证业务通道的能力.|4.基于BERT的迁移学习优化模型搭建的能力.|5.实现神经网络量化的优化与测试.|6.实现神经网络剪枝的优化与测试.|7.实现神经网络知识蒸馏的优化与测试.|8.更多主流预训练模型的优化与深度模型剖析|9.BERT模型在生成式任务和工程优化上的深入扩展|10.小样本学习,对比学习,主动学习的介绍
投满分项目主要解决在海量新闻,咨询等文本信息的场景下,需要完成文本类别的快速鉴别与分类,并完成按频道的投递和排队,最终推荐给对该类别感兴趣的用户,从而提升点击量、阅读量、付费量等关键指标.。该项目结合头条真实场景下的海量数据,快速搭建随机森林和FastText的基线模型,以验证商业化落地的可行性。更多聚焦在深度学习的优化方法上,搭建基于BERT的初版微调模型,应用量化,剪枝,预训练模型微调,知识蒸馏等多种手段,反复迭代,反复优化模型的离线效果,在线效果,并提供充分的扩展阅读资料,包括AlBERT,RoBERTa,macBERT, SpanBERT, MASS,Electra,GPT2, T5,Transformer-XL,XLNet,Reformer等工业界主流前沿模型的深入解读与代码实践。还包括学术界和工业界都很关注的小样本学习,对比学习,主动学习的技术点详解分析。
1.海量文本快速分类基线模型解决方案| 2.基于预训练模型优化的解决方案| 3.模型量化优化的解决方案| 4.模型剪枝优化的解决方案| 5.模型知识蒸馏优化的解决方案| 6.主流迁移学习模型微调优化的解决方案
1.解决方案列表| 2.项目背景介绍| 3.迁移学习优化| 4.模型的量化| 5.模型的剪枝| 6.迁移学习微调| 7.模型的知识蒸馏
课时:4天技术点:40项测验:0次学习方式:线下面授
1.理解关系抽取任务|2.了解实现关系抽取任务的基本方法|3.掌握Casrel模型架构及工作原理|4.掌握关系抽取数据处理方法|5.掌握关系抽取的应用场景
该项目针对于泛娱乐场景下复杂业务关系进行实体抽取,帮助企业构建知识图谱。关系抽取也是是从自然语言文本中抽取实体及其之间关系的信息技术,是信息检索、智能问答、智能对话等人工智能应用的重要基础,基于关系抽取构建泛娱乐场景下的实体关系,利用图数据库展示实体之间的关系,助力数字化转型。
1.文本数据处理解决方案| 2.基于Casrel模型实现关系抽取的解决方案
1.项目介绍:理解关系抽取任务以及关系抽取的常见场景| 2.环境构建:项目开发所需搭建的环境| 3.数据集介绍:数据来源、获取方式以及存储方式介绍| 4.数据处理:构建DataSet以及Dataloader| 5.Casrel模型构建:实现关系抽取
课时:5天 技术点:72项 测验:2次 学习方式:线下面授
1.掌握机器学习核心算法|2.掌握深度学习核心算法|3.掌握数据结构与算法|4.掌握多行业项目扩展|5.理解算法和模型的分布式实现及加速原理|6.深入理解常用算法,模式识别,概率统计.最优化等算法原理及应用|7.深入理解算法和模型调优方式及优缺点
1. 机器学习算法与ScikitLearn该部分主要加强机器学习核心算法,包含以下技术点:
01_分类算法| 02_回归的算法| 03_聚类算法| 04_数据科学流程
2. 深度学习算法与Pytorch该部分主要加强深度学习核心算法,包含以下技术点:
01_深度学习| 02_深度学习RNN实战| 03_深度学习算法LSTM实战| 04_深度学习多框架实战
3. 数据结构算法该部分主要加强数据结构核心算法,包含以下技术点:
01_时间复杂度,空间复杂度,Python内置类型性能分析,顺序表| 02_链表:链表和链表的应用;队列:队列概念,队列的实现与应用,双端队列| 03_排序和搜索算法:冒泡排序,选择排序,插入排序、快速排序,搜索,常见算法效率,散列表| 04_二叉树:树的引入,二叉树,二叉树的遍历,二叉树扩展
4. 多行业数据挖掘项目和NLP拓展该部分主要加强多行业项目,包含以下技术点:
01_多行业挖掘项目扩展| 02_NLP项目扩展 | 01_项目多场景实战
课时:6天 技术点:80项 测验:1次 学习方式:线下面授
1.熟悉深度学习主要及前沿网络模型的架构原理及在实际业务场景中的应用|2.掌握深度学习在计算机视觉中的应用,包括但不限于分割检测识别等等,3.掌握实际工作中深度学习的具体流程,数据及标注处理,建模训练,及模型部署应用等|4.实现物体(人体,人脸,通用目标)检测,跟踪与识别,道路交通及工业环境险情发现等多领域的深度学习解决方案,|5.能够对图像处理.人脸算法,或者对于各种深度学习框架实现的算法进行调优|6.可胜任深度学习算法工程师,图像与计算机视觉算法工程师等,并持续优化与迭代算法
1. 神经网络该模块主要介绍深度学习的基础知识,神经网络的构成,损失函数,优化方法等,及反向传播算法等内容
1.神经网络基础:神经网络的构成、激活函数、损失函数、优化方法及正则化|2.反向传播原理:梯度下降算法、链式法则、反向传播算法、改善反向传播算法性能的迭代法|3.深度学习正则化与算法优化:L1、L2、DroupOut、BN、SGD、RMSProp、Adagrad、Adam|4.实现多层神经网络案例
2. 图像与视觉处理介绍该模块主要介绍计算机视觉的定义,发展历史及应用场景
01_计算机视觉定义、计算机视觉发展历史|02_计算机视觉技术和应用场景、计算机视觉知识树和几大任务
3. 目标分类和经典CV网络该模块主要介绍卷积神经网络CNN,经典的网络架构,并通过分类案例介绍模型的实践方法
1.CNN:卷积的计算方法,多通道卷积,多卷积和卷积,池化层和全连接层|2.卷积网络结构:LeNet5、AlexNet、VGG、Inception/GoogleNet、残差网|3.目标分类实战案例:ImageNet分类|4.Apache Flink极客挑战赛——垃圾图片分类
4. 目标检测和经典CV网络该模块主要介绍目标检测任务,常见数据集,及经典的两阶段和单阶段的目标检测算法,并通过目标检测案例介绍实践方法
1.目标检测任务与数据集介绍:检测任务目的、常见数据集、应用场景|2.RCNN:交并比、map、非极大抑制NMS、正负样本|3.SPPNet:SPP层映射;FastRCNN:ROI Pooling|4.FasterRCNN:RPN、代价函数、训练流程与结果分析、FPN与FasterRCNN结合|5.YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5|6.结构与工作流程、代价函数、anchor、维度聚类、细粒度与多尺度特征、先验框与代价函数|7.SSD:Detector & classifier、SSD代价函数、特征金字塔|8.目标检测实战案例:COCO数据集上目标检测
5. 目标分割和经典CV网络该模块介绍图像分割的基本任务,语义分割和实例分割,及常用的网络架构,并通过MaskRCNN完成图像的实例分割
1.目标分割任务类型、数据集|2.全卷积FCN网络:网络结构、跳级连接、语义分割评价标准、结果分析|3.U-Net:拼接特征向量|4.Dilated Convolutions:聚合多尺度的信息、context module|5.SegNet:金字塔池化模块|6.Deeplab:串行部署 ASPP|7.Mask-RCNN:结构介绍、ROI Align与Pooling对比、代价函数介绍、端到端联合训练|8.目标分割实战案例
课时:6天技术点:98项测验:1次学习方式:线下面授
以人脸支付项目为例:1.掌握PCA.ICA.LDA和EP在人脸识别上的综合运用|2.掌握基于PyQt5的GUI编程模块及信号槽机制,3.利用人脸检测,扫描”加“判别”在图像范围内扫描,再逐个判定候选区域是否是人脸|4.利用状态判别,能识别出人脸的性别.表情等属性值|5.利用人脸识别,识别出输入人脸图对应身份的算法,找出“一个”与输入特征相似度最高的特征
人脸支付项目是一个基于计算机视觉方向的人脸识别项目,该项目以支付系统为背景介绍人脸处理的整体流程。类似的应用,如办公打卡,智慧食堂,人脸考勤,嫌疑人识别等。该项目利用机器学习和深度学习的方法,针对摄像头捕获的视频图像,进行人脸区域检测,人脸跟踪,人脸姿态,年龄,性别,关键点等属性的检测,人脸矫正,人脸比对完成人脸的识别。通过该项目,学生可学习到人脸相关任务的技术点以及相应的业务流程
1.视频中人脸检测的解决方案|2.人脸姿态(欧拉角)检测的解决方案|3.人脸关键点识别的解决方案|4.人脸多任务(年龄,性别等)检测的解决方案|5.人脸特征比对的解决方案
1.项目介绍:支付方式发展的介绍,人脸支付项目介绍,开发环境的搭建|2.视频中的人脸检测:人脸检测方法介绍,人脸检测的评价指标介绍,数据标注方式的介绍及获取数据方式的介绍,数据增强方法的介绍,yolo模型的介绍及模型构架,模型训练方式的介绍及实现,模型验证方式介绍及实现|3.人脸姿态:人脸姿态检测方法介绍,人脸姿态数据标注方法和获取方法介绍及实现,Resnet模型介绍及构建,模型训练和验证的介绍和实现|4.人脸关键点:人脸关键点检测方法介绍,人脸关键点数据标注方法和获取方法介绍及实现,resnet模型介绍及构建,模型训练和验证的介绍和实现|5.人脸多任务:人脸多任务介绍,人脸多任务数据标注方法和获取方法介绍及实现,senet模型介绍及构建,模型训练和验证的介绍和实现|6.人脸比对:人脸比对介绍,人脸比对数据标注方法和获取方法介绍及实现,arcface模型介绍及构建,模型训练和验证的介绍和实现,人脸数据库的构建与管理|7.系统集成:基于仿射变换的人脸矫正的实现,姿态过大或距离过远的人脸的过滤,系统集成方式的介绍和实现
课程名称:主要针对:主要使用开发工具:
↑ 上拉查看下阶段课程
专职课研团队专职教学团队
标准化研发人才画像
多维面试(五面)
研究院小组诊断测评
全链路面试流程监控
课研人员素质考核
课程设计考核
大纲设计考核
讲义撰写考核
视频录制考核
课堂试炼考核
产品全方位审评
考核答辩
技术开源历练
技术私享会
大牛技术沙龙
企业技术共享
应用市场调研+大
数据分析
获取前沿发展方向
前沿热门课题深入
剖析+技术攻坚,
保障课程前瞻性
基于市场主流技术研
发解决方案,
应对职场难题
基于热门行业领域联合
大牛顾问团,
研发“大厂级”项目
来自华为、IBM等百人大牛团,每年耗资亿元,
研发行业标杆优质课程
标准化讲师画像初试技术深度
复试授课质量终试价值观
定制个性化考核方案讲师素质考核
视频录制考核排课、备课产出物考核
教育心理考核教学方法考核
课堂试讲考核正式授课答辩
学员满意度打分阶段课程评审
多维培养计划讲师晋升通道
情景式教学法将教学过程形象化的一种授课方法,集风趣、
知识、故事场景于一体,可大大提高学员对
知识的理解和吸收
场景式授课通过分析场景特点、梳理场景流程、呈
现给定场景下技术的实现3个步骤,向学
员清晰的展现了开发的全流程。
Open教学法OPEN 教学法是由传智教育培训院首创的一套
教学方法论,旨在「用更短的时间讲明白一个
知识点」